Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adversarial Texts with Gradient Methods (1801.07175v2)

Published 22 Jan 2018 in cs.CL, cs.CR, and cs.LG

Abstract: Adversarial samples for images have been extensively studied in the literature. Among many of the attacking methods, gradient-based methods are both effective and easy to compute. In this work, we propose a framework to adapt the gradient attacking methods on images to text domain. The main difficulties for generating adversarial texts with gradient methods are i) the input space is discrete, which makes it difficult to accumulate small noise directly in the inputs, and ii) the measurement of the quality of the adversarial texts is difficult. We tackle the first problem by searching for adversarials in the embedding space and then reconstruct the adversarial texts via nearest neighbor search. For the latter problem, we employ the Word Mover's Distance (WMD) to quantify the quality of adversarial texts. Through extensive experiments on three datasets, IMDB movie reviews, Reuters-2 and Reuters-5 newswires, we show that our framework can leverage gradient attacking methods to generate very high-quality adversarial texts that are only a few words different from the original texts. There are many cases where we can change one word to alter the label of the whole piece of text. We successfully incorporate FGM and DeepFool into our framework. In addition, we empirically show that WMD is closely related to the quality of adversarial texts.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.