Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scale-invariant Feature Extraction of Neural Network and Renormalization Group Flow (1801.07172v1)

Published 22 Jan 2018 in hep-th, cond-mat.stat-mech, cs.LG, and stat.ML

Abstract: Theoretical understanding of how deep neural network (DNN) extracts features from input images is still unclear, but it is widely believed that the extraction is performed hierarchically through a process of coarse-graining. It reminds us of the basic concept of renormalization group (RG) in statistical physics. In order to explore possible relations between DNN and RG, we use the Restricted Boltzmann machine (RBM) applied to Ising model and construct a flow of model parameters (in particular, temperature) generated by the RBM. We show that the unsupervised RBM trained by spin configurations at various temperatures from $T=0$ to $T=6$ generates a flow along which the temperature approaches the critical value $T_c=2.27$. This behavior is opposite to the typical RG flow of the Ising model. By analyzing various properties of the weight matrices of the trained RBM, we discuss why it flows towards $T_c$ and how the RBM learns to extract features of spin configurations.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.