Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Extreme Learning Machine with Local Connections (1801.06975v1)

Published 22 Jan 2018 in cs.LG, cs.AI, and stat.ML

Abstract: This paper is concerned with the sparsification of the input-hidden weights of ELM (Extreme Learning Machine). For ordinary feedforward neural networks, the sparsification is usually done by introducing certain regularization technique into the learning process of the network. But this strategy can not be applied for ELM, since the input-hidden weights of ELM are supposed to be randomly chosen rather than to be learned. To this end, we propose a modified ELM, called ELM-LC (ELM with local connections), which is designed for the sparsification of the input-hidden weights as follows: The hidden nodes and the input nodes are divided respectively into several corresponding groups, and an input node group is fully connected with its corresponding hidden node group, but is not connected with any other hidden node group. As in the usual ELM, the hidden-input weights are randomly given, and the hidden-output weights are obtained through a least square learning. In the numerical simulations on some benchmark problems, the new ELM-CL behaves better than the traditional ELM.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.