Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Iteration Complexity Analysis of Stochastic Primal-Dual Hybrid Gradient Approach with High Probability (1801.06934v2)

Published 22 Jan 2018 in cs.LG and stat.ML

Abstract: In this paper, we propose a stochastic Primal-Dual Hybrid Gradient (PDHG) approach for solving a wide spectrum of regularized stochastic minimization problems, where the regularization term is composite with a linear function. It has been recognized that solving this kind of problem is challenging since the closed-form solution of the proximal mapping associated with the regularization term is not available due to the imposed linear composition, and the per-iteration cost of computing the full gradient of the expected objective function is extremely high when the number of input data samples is considerably large. Our new approach overcomes these issues by exploring the special structure of the regularization term and sampling a few data points at each iteration. Rather than analyzing the convergence in expectation, we provide the detailed iteration complexity analysis for the cases of both uniformly and non-uniformly averaged iterates with high probability. This strongly supports the good practical performance of the proposed approach. Numerical experiments demonstrate that the efficiency of stochastic PDHG, which outperforms other competing algorithms, as expected by the high-probability convergence analysis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube