Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Precise Analysis of PhaseMax in Phase Retrieval (1801.06609v1)

Published 20 Jan 2018 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Recovering an unknown complex signal from the magnitude of linear combinations of the signal is referred to as phase retrieval. We present an exact performance analysis of a recently proposed convex-optimization-formulation for this problem, known as PhaseMax. Standard convex-relaxation-based methods in phase retrieval resort to the idea of "lifting" which makes them computationally inefficient, since the number of unknowns is effectively squared. In contrast, PhaseMax is a novel convex relaxation that does not increase the number of unknowns. Instead it relies on an initial estimate of the true signal which must be externally provided. In this paper, we investigate the required number of measurements for exact recovery of the signal in the large system limit and when the linear measurement matrix is random with iid standard normal entries. If $n$ denotes the dimension of the unknown complex signal and $m$ the number of phaseless measurements, then in the large system limit, $\frac{m}{n} > \frac{4}{\cos2(\theta)}$ measurements is necessary and sufficient to recover the signal with high probability, where $\theta$ is the angle between the initial estimate and the true signal. Our result indicates a sharp phase transition in the asymptotic regime which matches the empirical result in numerical simulations.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.