Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Medical Photoacoustic Beamforming Using Minimum Variance-Based Delay Multiply and Sum (1801.06421v1)

Published 18 Jan 2018 in eess.SP, cs.IT, and math.IT

Abstract: Delay-and-Sum (DAS) beamformer is the most common beamforming algorithm in Photoacoustic imaging (PAI) due to its simple implementation and real time imaging. However, it provides poor resolution and high levels of sidelobe. A new algorithm named Delay-Multiply-and-Sum (DMAS) was introduced. Using DMAS leads to lower levels of sidelobe compared to DAS, but resolution is not satisfying yet. In this paper, a novel beamformer is introduced based on the combination of Minimum Variance (MV) adaptive beamforming and DMAS, so-called Minimum Variance-Based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation leads to some terms which contain a DAS equation. It is proposed to use MV adaptive beamformer instead of existing DAS inside the DMAS algebra expansion. MVB-DMAS is evaluated numerically compared to DAS, DMAS and MV and Signal-to-noise ratio (SNR) metric is presented. It is shown that MVB-DMAS leads to higher image quality and SNR for about 13 dB, 3 dB and 2 dB in comparison with DAS, DMAS and MV, respectively.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.