Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Robust Recovery of Low-Rank Matrices with Non-Orthogonal Sparse Decomposition from Incomplete Measurements (1801.06240v5)

Published 18 Jan 2018 in math.NA and cs.NA

Abstract: We consider the problem of recovering an unknown effectively $(s_1,s_2)$-sparse low-rank-$R$ matrix $X$ with possibly non-orthogonal rank-$1$ decomposition from incomplete and inaccurate linear measurements of the form $y = \mathcal A (X) + \eta$, where $\eta$ is an ineliminable noise. We first derive an optimization formulation for matrix recovery under the considered model and propose a novel algorithm, called Alternating Tikhonov regularization and Lasso (A-T-LA$\text{S}_{2,1}$), to solve it. The algorithm is based on a multi-penalty regularization, which is able to leverage both structures (low-rankness and sparsity) simultaneously. The algorithm is a fast first order method, and straightforward to implement. We prove global convergence for any linear measurement model to stationary points and local convergence to global minimizers. By adapting the concept of restricted isometry property from compressed sensing to our novel model class, we prove error bounds between global minimizers and ground truth, up to noise level, from a number of subgaussian measurements scaling as $R(s_1+s_2)$, up to log-factors in the dimension, and relative-to-diameter distortion. Simulation results demonstrate both the accuracy and efficacy of the algorithm, as well as its superiority to the state-of-the-art algorithms in strong noise regimes and for matrices, whose singular vectors do not possess exact (joint-) sparse support.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.