Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Degree-constrained 2-partitions of graphs (1801.06216v1)

Published 18 Jan 2018 in cs.DS and math.CO

Abstract: A $(\delta\geq k_1,\delta\geq k_2)$-partition of a graph $G$ is a vertex-partition $(V_1,V_2)$ of $G$ satisfying that $\delta(G[V_i])\geq k_i$ for $i=1,2$. We determine, for all positive integers $k_1,k_2$, the complexity of deciding whether a given graph has a $(\delta\geq k_1,\delta\geq k_2)$-partition. We also address the problem of finding a function $g(k_1,k_2)$ such that the $(\delta\geq k_1,\delta\geq k_2)$-partition problem is ${\cal NP}$-complete for the class of graphs of minimum degree less than $g(k_1,k_2)$ and polynomial for all graphs with minimum degree at least $g(k_1,k_2)$. We prove that $g(1,k)=k$ for $k\ge 3$, that $g(2,2)=3$ and that $g(2,3)$, if it exists, has value 4 or 5.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.