Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Test Collection Construction via Active Learning (1801.05605v4)

Published 17 Jan 2018 in cs.IR

Abstract: To create a new IR test collection at low cost, it is valuable to carefully select which documents merit human relevance judgments. Shared task campaigns such as NIST TREC pool document rankings from many participating systems (and often interactive runs as well) in order to identify the most likely relevant documents for human judging. However, if one's primary goal is merely to build a test collection, it would be useful to be able to do so without needing to run an entire shared task. Toward this end, we investigate multiple active learning strategies which, without reliance on system rankings: 1) select which documents human assessors should judge; and 2) automatically classify the relevance of additional unjudged documents. To assess our approach, we report experiments on five TREC collections with varying scarcity of relevant documents. We report labeling accuracy achieved, as well as rank correlation when evaluating participant systems based upon these labels vs.\ full pool judgments. Results show the effectiveness of our approach, and we further analyze how varying relevance scarcity across collections impacts our findings. To support reproducibility and follow-on work, we have shared our code online: https://github.com/mdmustafizurrahman/ICTIR_AL_TestCollection_2020/.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.