Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Algorithmic Polynomials (1801.04607v1)

Published 14 Jan 2018 in cs.CC and quant-ph

Abstract: The approximate degree of a Boolean function $f(x_{1},x_{2},\ldots,x_{n})$ is the minimum degree of a real polynomial that approximates $f$ pointwise within $1/3$. Upper bounds on approximate degree have a variety of applications in learning theory, differential privacy, and algorithm design in general. Nearly all known upper bounds on approximate degree arise in an existential manner from bounds on quantum query complexity. We develop a first-principles, classical approach to the polynomial approximation of Boolean functions. We use it to give the first constructive upper bounds on the approximate degree of several fundamental problems: - $O\bigl(n{\frac{3}{4}-\frac{1}{4(2{k}-1)}}\bigr)$ for the $k$-element distinctness problem; - $O(n{1-\frac{1}{k+1}})$ for the $k$-subset sum problem; - $O(n{1-\frac{1}{k+1}})$ for any $k$-DNF or $k$-CNF formula; - $O(n{3/4})$ for the surjectivity problem. In all cases, we obtain explicit, closed-form approximating polynomials that are unrelated to the quantum arguments from previous work. Our first three results match the bounds from quantum query complexity. Our fourth result improves polynomially on the $\Theta(n)$ quantum query complexity of the problem and refutes the conjecture by several experts that surjectivity has approximate degree $\Omega(n)$. In particular, we exhibit the first natural problem with a polynomial gap between approximate degree and quantum query complexity.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)