Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Waring's Theorem for Binary Powers (1801.04483v1)

Published 13 Jan 2018 in math.NT, cs.DM, and math.CO

Abstract: A natural number is a binary $k$'th power if its binary representation consists of $k$ consecutive identical blocks. We prove an analogue of Waring's theorem for sums of binary $k$'th powers. More precisely, we show that for each integer $k \geq 2$, there exists a positive integer $W(k)$ such that every sufficiently large multiple of $E_k := \gcd(2k - 1, k)$ is the sum of at most $W(k)$ binary $k$'th powers. (The hypothesis of being a multiple of $E_k$ cannot be omitted, since we show that the $\gcd$ of the binary $k$'th powers is $E_k$.) Also, we explain how our results can be extended to arbitrary integer bases $b > 2$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube