Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semi-supervised Fisher vector network (1801.04438v1)

Published 13 Jan 2018 in cs.CV

Abstract: In this work we explore how the architecture proposed in [8], which expresses the processing steps of the classical Fisher vector pipeline approaches, i.e. dimensionality reduction by principal component analysis (PCA) projection, Gaussian mixture model (GMM) and Fisher vector descriptor extraction as network layers, can be modified into a hybrid network that combines the benefits of both unsupervised and supervised training methods, resulting in a model that learns a semi-supervised Fisher vector descriptor of the input data. We evaluate the proposed model at image classification and action recognition problems and show how the model's classification performance improves as the amount of unlabeled data increases during training.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.