Papers
Topics
Authors
Recent
2000 character limit reached

Generalization Error Bounds for Noisy, Iterative Algorithms (1801.04295v1)

Published 12 Jan 2018 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: In statistical learning theory, generalization error is used to quantify the degree to which a supervised machine learning algorithm may overfit to training data. Recent work [Xu and Raginsky (2017)] has established a bound on the generalization error of empirical risk minimization based on the mutual information $I(S;W)$ between the algorithm input $S$ and the algorithm output $W$, when the loss function is sub-Gaussian. We leverage these results to derive generalization error bounds for a broad class of iterative algorithms that are characterized by bounded, noisy updates with Markovian structure. Our bounds are very general and are applicable to numerous settings of interest, including stochastic gradient Langevin dynamics (SGLD) and variants of the stochastic gradient Hamiltonian Monte Carlo (SGHMC) algorithm. Furthermore, our error bounds hold for any output function computed over the path of iterates, including the last iterate of the algorithm or the average of subsets of iterates, and also allow for non-uniform sampling of data in successive updates of the algorithm.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.