Papers
Topics
Authors
Recent
2000 character limit reached

Informed Group-Sparse Representation for Singing Voice Separation (1801.03815v1)

Published 9 Jan 2018 in eess.AS, cs.IR, cs.SD, eess.SP, and stat.ML

Abstract: Singing voice separation attempts to separate the vocal and instrumental parts of a music recording, which is a fundamental problem in music information retrieval. Recent work on singing voice separation has shown that the low-rank representation and informed separation approaches are both able to improve separation quality. However, low-rank optimizations are computationally inefficient due to the use of singular value decompositions. Therefore, in this paper, we propose a new linear-time algorithm called informed group-sparse representation, and use it to separate the vocals from music using pitch annotations as side information. Experimental results on the iKala dataset confirm the efficacy of our approach, suggesting that the music accompaniment follows a group-sparse structure given a pre-trained instrumental dictionary. We also show how our work can be easily extended to accommodate multiple dictionaries using the DSD100 dataset.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.