Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Asynchronous Mobile-Edge Computation Offloading: Energy-Efficient Resource Management (1801.03668v3)

Published 11 Jan 2018 in cs.IT and math.IT

Abstract: Mobile-edge computation offloading (MECO) is an emerging technology for enhancing mobiles' computation capabilities and prolonging their battery lives, by offloading intensive computation from mobiles to nearby servers such as base stations. In this paper, we study the energy-efficient resource-management policy for the asynchronous MECO system, where the mobiles have heterogeneous input-data arrival time instants and computation deadlines. First, we consider the general case with arbitrary arrival-deadline orders. Based on the monomial energy-consumption model for data transmission, an optimization problem is formulated to minimize the total mobile-energy consumption under the time-sharing and computation-deadline constraints. The optimal resource-management policy for data partitioning (for offloading and local computing) and time division (for transmissions) is shown to be computed by using the block coordinate decent method. To gain further insights, we study the optimal resource-management design for two special cases. First, consider the case of identical arrival-deadline orders, i.e., a mobile with input data arriving earlier also needs to complete computation earlier. The optimization problem is reduced to two sequential problems corresponding to the optimal scheduling order and joint data-partitioning and time-division given the optimal order. It is found that the optimal time-division policy tends to balance the defined effective computing power among offloading mobiles via time sharing. Furthermore, this solution approach is extended to the case of reverse arrival-deadline orders. The corresponding time-division policy is derived by a proposed transformation-and-scheduling approach, which first determines the total offloading duration and data size for each mobile in the transformation phase and then specifies the offloading intervals for each mobile in the scheduling phase.

Citations (99)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.