Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep In-GPU Experience Replay (1801.03138v1)

Published 9 Jan 2018 in cs.AI

Abstract: Experience replay allows a reinforcement learning agent to train on samples from a large amount of the most recent experiences. A simple in-RAM experience replay stores these most recent experiences in a list in RAM, and then copies sampled batches to the GPU for training. I moved this list to the GPU, thus creating an in-GPU experience replay, and a training step that no longer has inputs copied from the CPU. I trained an agent to play Super Smash Bros. Melee, using internal game memory values as inputs and outputting controller button presses. A single state in Melee contains 27 floats, so the full experience replay fits on a single GPU. For a batch size of 128, the in-GPU experience replay trained twice as fast as the in-RAM experience replay. As far as I know, this is the first in-GPU implementation of experience replay. Finally, I note a few ideas for fitting the experience replay inside the GPU when the environment state requires more memory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)