Papers
Topics
Authors
Recent
2000 character limit reached

Dendritic-Inspired Processing Enables Bio-Plausible STDP in Compound Binary Synapses (1801.02797v1)

Published 9 Jan 2018 in cs.NE and cs.ET

Abstract: Brain-inspired learning mechanisms, e.g. spike timing dependent plasticity (STDP), enable agile and fast on-the-fly adaptation capability in a spiking neural network. When incorporating emerging nanoscale resistive non-volatile memory (NVM) devices, with ultra-low power consumption and high-density integration capability, a spiking neural network hardware would result in several orders of magnitude reduction in energy consumption at a very small form factor and potentially herald autonomous learning machines. However, actual memory devices have shown to be intrinsically binary with stochastic switching, and thus impede the realization of ideal STDP with continuous analog values. In this work, a dendritic-inspired processing architecture is proposed in addition to novel CMOS neuron circuits. The utilization of spike attenuations and delays transforms the traditionally undesired stochastic behavior of binary NVMs into a useful leverage that enables biologically-plausible STDP learning. As a result, this work paves a pathway to adopt practical binary emerging NVM devices in brain-inspired neuromorphic computing.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.