Depth Sequence Coding with Hierarchical Partitioning and Spatial-domain Quantisation (1801.02298v1)
Abstract: Depth coding in 3D-HEVC for the multiview video plus depth (MVD) architecture (i) deforms object shapes due to block-level edge-approximation; (ii) misses an opportunity for high compressibility at near-lossless quality by failing to exploit strong homogeneity (clustering tendency) in depth syntax, motion vector components, and residuals at frame-level; and (iii) restricts interactivity and limits responsiveness of independent use of depth information for "non-viewing" applications due to texture-depth coding dependency. This paper presents a standalone depth sequence coder, which operates in the lossless to near-lossless quality range while compressing depth data superior to lossy 3D-HEVC. It preserves edges implicitly by limiting quantisation to the spatial-domain and exploits clustering tendency efficiently at frame-level with a novel binary tree based decomposition (BTBD) technique. For mono-view coding of standard MVD test sequences, on average, (i) lossless BTBD achieved $\times 42.2$ compression-ratio and $-60.0\%$ coding gain against the pseudo-lossless 3D-HEVC, using the lowest quantisation parameter $QP = 1$, and (ii) near-lossless BTBD achieved $-79.4\%$ and $6.98$ dB Bj{\o}ntegaard delta bitrate (BD-BR) and distortion (BD-PSNR), respectively, against 3D-HEVC. In view-synthesis applications, decoded depth maps from BTBD rendered superior quality synthetic-views, compared to 3D-HEVC, with $-18.9\%$ depth BD-BR and $0.43$ dB synthetic-texture BD-PSNR on average.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.