Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

3D-DETNet: a Single Stage Video-Based Vehicle Detector (1801.01769v2)

Published 5 Jan 2018 in cs.CV

Abstract: Video-based vehicle detection has received considerable attention over the last ten years and there are many deep learning based detection methods which can be applied to it. However, these methods are devised for still images and applying them for video vehicle detection directly always obtains poor performance. In this work, we propose a new single-stage video-based vehicle detector integrated with 3DCovNet and focal loss, called 3D-DETNet. Draw support from 3D Convolution network and focal loss, our method has ability to capture motion information and is more suitable to detect vehicle in video than other single-stage methods devised for static images. The multiple video frames are initially fed to 3D-DETNet to generate multiple spatial feature maps, then sub-model 3DConvNet takes spatial feature maps as input to capture temporal information which is fed to final fully convolution model for predicting locations of vehicles in video frames. We evaluate our method on UA-DETAC vehicle detection dataset and our 3D-DETNet yields best performance and keeps a higher detection speed of 26 fps compared with other competing methods.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)