Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Combination of Hyperband and Bayesian Optimization for Hyperparameter Optimization in Deep Learning (1801.01596v1)

Published 5 Jan 2018 in cs.CV, cs.AI, and cs.LG

Abstract: Deep learning has achieved impressive results on many problems. However, it requires high degree of expertise or a lot of experience to tune well the hyperparameters, and such manual tuning process is likely to be biased. Moreover, it is not practical to try out as many different hyperparameter configurations in deep learning as in other machine learning scenarios, because evaluating each single hyperparameter configuration in deep learning would mean training a deep neural network, which usually takes quite long time. Hyperband algorithm achieves state-of-the-art performance on various hyperparameter optimization problems in the field of deep learning. However, Hyperband algorithm does not utilize history information of previous explored hyperparameter configurations, thus the solution found is suboptimal. We propose to combine Hyperband algorithm with Bayesian optimization (which does not ignore history when sampling next trial configuration). Experimental results show that our combination approach is superior to other hyperparameter optimization approaches including Hyperband algorithm.

Citations (66)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.