Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Computational Higher Type Theory IV: Inductive Types (1801.01568v3)

Published 4 Jan 2018 in cs.LO

Abstract: This is the fourth in a series of papers extending Martin-L\"of's meaning explanation of dependent type theory to higher-dimensional types. In this instaLLMent, we show how to define cubical type systems supporting a general schema of indexed cubical inductive types whose constructors may take dimension parameters and have a specified boundary. Using this schema, we are able to specify and implement many of the higher inductive types which have been postulated in homotopy type theory, including homotopy pushouts, the torus, $W$-quotients, truncations, arbitrary localizations. By including indexed inductive types, we enable the definition of identity types. The addition of higher inductive types makes computational higher type theory a model of homotopy type theory, capable of interpreting almost all of the constructions in the HoTT Book (with the exception of inductive-inductive types). This is the first such model with an explicit canonicity theorem, which specifies the canonical values of higher inductive types and confirms that every term in an inductive type evaluates to such a value.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.