Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Operator scaling with specified marginals (1801.01412v2)

Published 1 Jan 2018 in math.CO, cs.CC, math.AG, math.OC, and quant-ph

Abstract: The completely positive maps, a generalization of the nonnegative matrices, are a well-studied class of maps from $n\times n$ matrices to $m\times m$ matrices. The existence of the operator analogues of doubly stochastic scalings of matrices is equivalent to a multitude of problems in computer science and mathematics, such rational identity testing in non-commuting variables, noncommutative rank of symbolic matrices, and a basic problem in invariant theory (Garg, Gurvits, Oliveira and Wigderson, FOCS, 2016). We study operator scaling with specified marginals, which is the operator analogue of scaling matrices to specified row and column sums. We characterize the operators which can be scaled to given marginals, much in the spirit of the Gurvits' algorithmic characterization of the operators that can be scaled to doubly stochastic (Gurvits, Journal of Computer and System Sciences, 2004). Our algorithm produces approximate scalings in time poly(n,m) whenever scalings exist. A central ingredient in our analysis is a reduction from the specified marginals setting to the doubly stochastic setting. Operator scaling with specified marginals arises in diverse areas of study such as the Brascamp-Lieb inequalities, communication complexity, eigenvalues of sums of Hermitian matrices, and quantum information theory. Some of the known theorems in these areas, several of which had no effective proof, are straightforward consequences of our characterization theorem. For instance, we obtain a simple algorithm to find, when they exist, a tuple of Hermitian matrices with given spectra whose sum has a given spectrum. We also prove new theorems such as a generalization of Forster's theorem (Forster, Journal of Computer and System Sciences, 2002) concerning radial isotropic position.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)