Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices (1801.01072v3)

Published 3 Jan 2018 in cs.IT and math.IT

Abstract: Thevon Neumann entropy, named after John von Neumann, is an extension of the classical concept of entropy to the field of quantum mechanics. From a numerical perspective, von Neumann entropy can be computed simply by computing all eigenvalues of a density matrix, an operation that could be prohibitively expensive for large-scale density matrices. We present and analyze three randomized algorithms to approximate von Neumann entropy of {real} density matrices: our algorithms leverage recent developments in the Randomized Numerical Linear Algebra (RandNLA) literature, such as randomized trace estimators, provable bounds for the power method, and the use of random projections to approximate the eigenvalues of a matrix. All three algorithms come with provable accuracy guarantees and our experimental evaluations support our theoretical findings showing considerable speedup with small loss in accuracy.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.