Papers
Topics
Authors
Recent
2000 character limit reached

Information Bottleneck on General Alphabets (1801.01050v2)

Published 3 Jan 2018 in cs.IT and math.IT

Abstract: We prove rigorously a source coding theorem that can probably be considered folklore, a generalization to arbitrary alphabets of a problem motivated by the Information Bottleneck method. For general random variables $(Y, X)$, we show essentially that for some $n \in \mathbb{N}$, a function $f$ with rate limit $\log|f| \le nR$ and $I(Yn; f(Xn)) \ge nS$ exists if and only if there is a random variable $U$ such that the Markov chain $Y - X - U$ holds, $I(U; X) \le R$ and $I(U; Y) \ge S$. The proof relies on the well established discrete case and showcases a technique for lifting discrete coding theorems to arbitrary alphabets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.