Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Semantic-Rich Similarity Measure in Heterogeneous Information Networks (1801.00783v3)

Published 2 Jan 2018 in cs.DB

Abstract: Measuring the similarities between objects in information networks has fundamental importance in recommendation systems, clustering and web search. The existing metrics depend on the meta path or meta structure specified by users. In this paper, we propose a stratified meta structure based similarity $SMSS$ in heterogeneous information networks. The stratified meta structure can be constructed automatically and capture rich semantics. Then, we define the commuting matrix of the stratified meta structure by virtue of the commuting matrices of meta paths and meta structures. As a result, $SMSS$ is defined by virtue of these commuting matrices. Experimental evaluations show that the proposed $SMSS$ on the whole outperforms the state-of-the-art metrics in terms of ranking and clustering.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube