Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAFFRON: A Semi-Automated Framework for Software Requirements Prioritization (1801.00354v1)

Published 31 Dec 2017 in cs.SE

Abstract: Due to dynamic nature of current software development methods, changes in requirements are embraced and given proper consideration. However, this triggers the rank reversal problem which involves re-prioritizing requirements based on stakeholders' feedback. It incurs significant cost because of time elapsed in large number of human interactions. To solve this issue, a Semi-Automated Framework for soFtware Requirements priOritizatioN (SAFFRON) is presented in this paper. For a particular requirement, SAFFRON predicts appropriate stakeholders' ratings to reduce human interactions. Initially, item-item collaborative filtering is utilized to estimate similarity between new and previously elicited requirements. Using this similarity, stakeholders who are most likely to rate requirements are determined. Afterwards, collaborative filtering based on latent factor model is used to predict ratings of those stakeholders. The proposed approach is implemented and tested on RALIC dataset. The results illustrate consistent correlation, similar to state of the art approaches, with the ground truth. In addition, SAFFRON requires 13.5-27% less human interaction for re-prioritizing requirements.

Citations (9)

Summary

We haven't generated a summary for this paper yet.