Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Discriminative and Geometry Aware Unsupervised Domain Adaptation (1712.10042v1)

Published 28 Dec 2017 in cs.CV

Abstract: Domain adaptation (DA) aims to generalize a learning model across training and testing data despite the mismatch of their data distributions. In light of a theoretical estimation of upper error bound, we argue in this paper that an effective DA method should 1) search a shared feature subspace where source and target data are not only aligned in terms of distributions as most state of the art DA methods do, but also discriminative in that instances of different classes are well separated; 2) account for the geometric structure of the underlying data manifold when inferring data labels on the target domain. In comparison with a baseline DA method which only cares about data distribution alignment between source and target, we derive three different DA models, namely CDDA, GA-DA, and DGA-DA, to highlight the contribution of Close yet Discriminative DA(CDDA) based on 1), Geometry Aware DA (GA-DA) based on 2), and finally Discriminative and Geometry Aware DA (DGA-DA) implementing jointly 1) and 2). Using both synthetic and real data, we show the effectiveness of the proposed approach which consistently outperforms state of the art DA methods over 36 image classification DA tasks through 6 popular benchmarks. We further carry out in-depth analysis of the proposed DA method in quantifying the contribution of each term of our DA model and provide insights into the proposed DA methods in visualizing both real and synthetic data.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.