Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Differentially Private Matrix Completion Revisited (1712.09765v2)

Published 28 Dec 2017 in cs.LG

Abstract: We provide the first provably joint differentially private algorithm with formal utility guarantees for the problem of user-level privacy-preserving collaborative filtering. Our algorithm is based on the Frank-Wolfe method, and it consistently estimates the underlying preference matrix as long as the number of users $m$ is $\omega(n{5/4})$, where $n$ is the number of items, and each user provides her preference for at least $\sqrt{n}$ randomly selected items. Along the way, we provide an optimal differentially private algorithm for singular vector computation, based on the celebrated Oja's method, that provides significant savings in terms of space and time while operating on sparse matrices. We also empirically evaluate our algorithm on a suite of datasets, and show that it consistently outperforms the state-of-the-art private algorithms.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.