Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The information bottleneck and geometric clustering (1712.09657v2)

Published 27 Dec 2017 in stat.ML, cs.AI, cs.IT, cs.LG, and math.IT

Abstract: The information bottleneck (IB) approach to clustering takes a joint distribution $P!\left(X,Y\right)$ and maps the data $X$ to cluster labels $T$ which retain maximal information about $Y$ (Tishby et al., 1999). This objective results in an algorithm that clusters data points based upon the similarity of their conditional distributions $P!\left(Y\mid X\right)$. This is in contrast to classic "geometric clustering'' algorithms such as $k$-means and gaussian mixture models (GMMs) which take a set of observed data points $\left{ \mathbf{x}_{i}\right} _{i=1:N}$ and cluster them based upon their geometric (typically Euclidean) distance from one another. Here, we show how to use the deterministic information bottleneck (DIB) (Strouse and Schwab, 2017), a variant of IB, to perform geometric clustering, by choosing cluster labels that preserve information about data point location on a smoothed dataset. We also introduce a novel method to choose the number of clusters, based on identifying solutions where the tradeoff between number of clusters used and spatial information preserved is strongest. We apply this approach to a variety of simple clustering problems, showing that DIB with our model selection procedure recovers the generative cluster labels. We also show that, in particular limits of our model parameters, clustering with DIB and IB is equivalent to $k$-means and EM fitting of a GMM with hard and soft assignments, respectively. Thus, clustering with (D)IB generalizes and provides an information-theoretic perspective on these classic algorithms.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.