Papers
Topics
Authors
Recent
2000 character limit reached

On efficiently solvable cases of Quantum k-SAT (1712.09617v3)

Published 27 Dec 2017 in quant-ph, cs.CC, math.AG, and math.CO

Abstract: The constraint satisfaction problems k-SAT and Quantum k-SAT (k-QSAT) are canonical NP-complete and QMA_1-complete problems (for k>=3), respectively, where QMA_1 is a quantum generalization of NP with one-sided error. Whereas k-SAT has been well-studied for special tractable cases, as well as from a parameterized complexity perspective, much less is known in similar settings for k-QSAT. Here, we study the open problem of computing satisfying assignments to k-QSAT instances which have a "matching" or "dimer covering"; this is an NP problem whose decision variant is trivial, but whose search complexity remains open. Our results fall into three directions, all of which relate to the "matching" setting: (1) We give a polynomial-time classical algorithm for k-QSAT when all qubits occur in at most two clauses. (2) We give a parameterized algorithm for k-QSAT instances from a certain non-trivial class, which allows us to obtain exponential speedups over brute force methods in some cases. This is achieved by reducing the problem to solving for a single root of a single univariate polynomial. (3) We conduct a structural graph theoretic study of 3-QSAT interaction graphs which have a "matching". We remark that the results of (2), in particular, introduce a number of new tools to the study of Quantum SAT, including graph theoretic concepts such as transfer filtrations and blow-ups from algebraic geometry.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.