Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Formalization of Unique Solutions of Equations in Process Algebra (1712.09402v1)

Published 5 Dec 2017 in cs.LO and cs.PL

Abstract: In this thesis, a comprehensive formalization of Milner's Calculus of Communicating Systems (also known as CCS) has been done in HOL theorem prover (HOL4), based on an old work in HOL88. This includes all classical properties of strong/weak bisimulation equivalences and observation congruence, a theory of congruence for CCS, various versions of "bisimulation up to" techniques, and several deep theorems, namely the "coarsest congruence contained in weak equivalence", and three versions of the "unique solution of equations" theorem in Milner's book. This work is further extended to support recent developments in Concurrency Theory, namely the "contraction" relation and the related "unique solutions of contractions" theorem found by Prof. Davide Sangiorgi, University of Bologna. As a result, a rather complete theory of "contraction" (and a similar relation called "expansion") for CCS is also formalized in this thesis. Further more, a new variant of contraction called "observational contraction" was found by the author during this work, based on existing contraction relation. It's formally proved that, this new relation is preserved by direct sums of CCS processes, and has a more elegant form of the "unique solutions of contractions" theorem without any restriction on the CCS grammar.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.