Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Domain Adaptation Meets Disentangled Representation Learning and Style Transfer (1712.09025v4)

Published 25 Dec 2017 in cs.CV

Abstract: Many methods have been proposed to solve the domain adaptation problem recently. However, the success of them implicitly funds on the assumption that the information of domains are fully transferrable. If the assumption is not satisfied, the effect of negative transfer may degrade domain adaptation. In this paper, a better learning network has been proposed by considering three tasks - domain adaptation, disentangled representation, and style transfer simultaneously. Firstly, the learned features are disentangled into common parts and specific parts. The common parts represent the transferrable features, which are suitable for domain adaptation with less negative transfer. Conversely, the specific parts characterize the unique style of each individual domain. Based on this, the new concept of feature exchange across domains, which can not only enhance the transferability of common features but also be useful for image style transfer, is introduced. These designs allow us to introduce five types of training objectives to realize the three challenging tasks at the same time. The experimental results show that our architecture can be adaptive well to full transfer learning and partial transfer learning upon a well-learned disentangled representation. Besides, the trained network also demonstrates high potential to generate style-transferred images.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube