Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Combining Weakly and Webly Supervised Learning for Classifying Food Images (1712.08730v1)

Published 23 Dec 2017 in cs.CV

Abstract: Food classification from images is a fine-grained classification problem. Manual curation of food images is cost, time and scalability prohibitive. On the other hand, web data is available freely but contains noise. In this paper, we address the problem of classifying food images with minimal data curation. We also tackle a key problems with food images from the web where they often have multiple cooccuring food types but are weakly labeled with a single label. We first demonstrate that by sequentially adding a few manually curated samples to a larger uncurated dataset from two web sources, the top-1 classification accuracy increases from 50.3% to 72.8%. To tackle the issue of weak labels, we augment the deep model with Weakly Supervised learning (WSL) that results in an increase in performance to 76.2%. Finally, we show some qualitative results to provide insights into the performance improvements using the proposed ideas.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.