Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Variational Autoencoders for Learning Latent Representations of Speech Emotion: A Preliminary Study (1712.08708v3)

Published 23 Dec 2017 in cs.SD, cs.LG, eess.AS, and stat.ML

Abstract: Learning the latent representation of data in unsupervised fashion is a very interesting process that provides relevant features for enhancing the performance of a classifier. For speech emotion recognition tasks, generating effective features is crucial. Currently, handcrafted features are mostly used for speech emotion recognition, however, features learned automatically using deep learning have shown strong success in many problems, especially in image processing. In particular, deep generative models such as Variational Autoencoders (VAEs) have gained enormous success for generating features for natural images. Inspired by this, we propose VAEs for deriving the latent representation of speech signals and use this representation to classify emotions. To the best of our knowledge, we are the first to propose VAEs for speech emotion classification. Evaluations on the IEMOCAP dataset demonstrate that features learned by VAEs can produce state-of-the-art results for speech emotion classification.

Citations (100)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.