Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-dimensional Graph Fourier Transform (1712.07811v1)

Published 21 Dec 2017 in stat.ME, cs.LG, and stat.ML

Abstract: Many signals on Cartesian product graphs appear in the real world, such as digital images, sensor observation time series, and movie ratings on Netflix. These signals are "multi-dimensional" and have directional characteristics along each factor graph. However, the existing graph Fourier transform does not distinguish these directions, and assigns 1-D spectra to signals on product graphs. Further, these spectra are often multi-valued at some frequencies. Our main result is a multi-dimensional graph Fourier transform that solves such problems associated with the conventional GFT. Using algebraic properties of Cartesian products, the proposed transform rearranges 1-D spectra obtained by the conventional GFT into the multi-dimensional frequency domain, of which each dimension represents a directional frequency along each factor graph. Thus, the multi-dimensional graph Fourier transform enables directional frequency analysis, in addition to frequency analysis with the conventional GFT. Moreover, this rearrangement resolves the multi-valuedness of spectra in some cases. The multi-dimensional graph Fourier transform is a foundation of novel filterings and stationarities that utilize dimensional information of graph signals, which are also discussed in this study. The proposed methods are applicable to a wide variety of data that can be regarded as signals on Cartesian product graphs. This study also notes that multivariate graph signals can be regarded as 2-D univariate graph signals. This correspondence provides natural definitions of the multivariate graph Fourier transform and the multivariate stationarity based on their 2-D univariate versions.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.