Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Context-Aware Semantic Inpainting (1712.07778v1)

Published 21 Dec 2017 in cs.CV

Abstract: Recently image inpainting has witnessed rapid progress due to generative adversarial networks (GAN) that are able to synthesize realistic contents. However, most existing GAN-based methods for semantic inpainting apply an auto-encoder architecture with a fully connected layer, which cannot accurately maintain spatial information. In addition, the discriminator in existing GANs struggle to understand high-level semantics within the image context and yield semantically consistent content. Existing evaluation criteria are biased towards blurry results and cannot well characterize edge preservation and visual authenticity in the inpainting results. In this paper, we propose an improved generative adversarial network to overcome the aforementioned limitations. Our proposed GAN-based framework consists of a fully convolutional design for the generator which helps to better preserve spatial structures and a joint loss function with a revised perceptual loss to capture high-level semantics in the context. Furthermore, we also introduce two novel measures to better assess the quality of image inpainting results. Experimental results demonstrate that our method outperforms the state of the art under a wide range of criteria.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.