Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhance Visual Recognition under Adverse Conditions via Deep Networks (1712.07732v2)

Published 20 Dec 2017 in cs.CV

Abstract: Visual recognition under adverse conditions is a very important and challenging problem of high practical value, due to the ubiquitous existence of quality distortions during image acquisition, transmission, or storage. While deep neural networks have been extensively exploited in the techniques of low-quality image restoration and high-quality image recognition tasks respectively, few studies have been done on the important problem of recognition from very low-quality images. This paper proposes a deep learning based framework for improving the performance of image and video recognition models under adverse conditions, using robust adverse pre-training or its aggressive variant. The robust adverse pre-training algorithms leverage the power of pre-training and generalizes conventional unsupervised pre-training and data augmentation methods. We further develop a transfer learning approach to cope with real-world datasets of unknown adverse conditions. The proposed framework is comprehensively evaluated on a number of image and video recognition benchmarks, and obtains significant performance improvements under various single or mixed adverse conditions. Our visualization and analysis further add to the explainability of results.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.