Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hyperparameters Optimization in Deep Convolutional Neural Network / Bayesian Approach with Gaussian Process Prior (1712.07233v1)

Published 19 Dec 2017 in cs.CV, cs.LG, and stat.ML

Abstract: Convolutional Neural Network is known as ConvNet have been extensively used in many complex machine learning tasks. However, hyperparameters optimization is one of a crucial step in developing ConvNet architectures, since the accuracy and performance are reliant on the hyperparameters. This multilayered architecture parameterized by a set of hyperparameters such as the number of convolutional layers, number of fully connected dense layers & neurons, the probability of dropout implementation, learning rate. Hence the searching the hyperparameter over the hyperparameter space are highly difficult to build such complex hierarchical architecture. Many methods have been proposed over the decade to explore the hyperparameter space and find the optimum set of hyperparameter values. Reportedly, Gird search and Random search are said to be inefficient and extremely expensive, due to a large number of hyperparameters of the architecture. Hence, Sequential model-based Bayesian Optimization is a promising alternative technique to address the extreme of the unknown cost function. The recent study on Bayesian Optimization by Snoek in nine convolutional network parameters is achieved the lowerest error report in the CIFAR-10 benchmark. This article is intended to provide the overview of the mathematical concept behind the Bayesian Optimization over a Gaussian prior.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)