Papers
Topics
Authors
Recent
2000 character limit reached

On Data-Dependent Random Features for Improved Generalization in Supervised Learning (1712.07102v1)

Published 19 Dec 2017 in stat.ML and cs.LG

Abstract: The randomized-feature approach has been successfully employed in large-scale kernel approximation and supervised learning. The distribution from which the random features are drawn impacts the number of features required to efficiently perform a learning task. Recently, it has been shown that employing data-dependent randomization improves the performance in terms of the required number of random features. In this paper, we are concerned with the randomized-feature approach in supervised learning for good generalizability. We propose the Energy-based Exploration of Random Features (EERF) algorithm based on a data-dependent score function that explores the set of possible features and exploits the promising regions. We prove that the proposed score function with high probability recovers the spectrum of the best fit within the model class. Our empirical results on several benchmark datasets further verify that our method requires smaller number of random features to achieve a certain generalization error compared to the state-of-the-art while introducing negligible pre-processing overhead. EERF can be implemented in a few lines of code and requires no additional tuning parameters.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.