Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Approximate Correlation Clustering Using Same-Cluster Queries (1712.06865v1)

Published 19 Dec 2017 in cs.DS

Abstract: Ashtiani et al. (NIPS 2016) introduced a semi-supervised framework for clustering (SSAC) where a learner is allowed to make same-cluster queries. More specifically, in their model, there is a query oracle that answers queries of the form given any two vertices, do they belong to the same optimal cluster?. Ashtiani et al. showed the usefulness of such a query framework by giving a polynomial time algorithm for the k-means clustering problem where the input dataset satisfies some separation condition. Ailon et al. extended the above work to the approximation setting by giving an efficient (1+\eps)-approximation algorithm for k-means for any small \eps > 0 and any dataset within the SSAC framework. In this work, we extend this line of study to the correlation clustering problem. Correlation clustering is a graph clustering problem where pairwise similarity (or dissimilarity) information is given for every pair of vertices and the objective is to partition the vertices into clusters that minimise the disagreement (or maximises agreement) with the pairwise information given as input. These problems are popularly known as MinDisAgree and MaxAgree problems, and MinDisAgree[k] and MaxAgree[k] are versions of these problems where the number of optimal clusters is at most k. There exist Polynomial Time Approximation Schemes (PTAS) for MinDisAgree[k] and MaxAgree[k] where the approximation guarantee is (1+\eps) for any small \eps and the running time is polynomial in the input parameters but exponential in k and 1/\eps. We obtain an (1+\eps)-approximation algorithm for any small \eps with running time that is polynomial in the input parameters and also in k and 1/\eps. We also give non-trivial upper and lower bounds on the number of same-cluster queries, the lower bound being based on the Exponential Time Hypothesis (ETH).

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.