Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dimensions of nonbinary antiprimitive BCH codes and some conjectures (1712.06842v2)

Published 19 Dec 2017 in cs.IT and math.IT

Abstract: Bose-Chaudhuri-Hocquenghem (BCH) codes have been intensively investigated. Even so, there is only a little known about primitive BCH codes, let alone non-primitive ones. In this paper, let $q>2$ be a prime power, the dimension of a family of non-primitive BCH codes of length $n=q{m}+1$ (also called antiprimitive) is studied. These codes are also linear codes with complementary duals (called LCD codes). Through some approaches such as iterative algorithm, partition and scaling, all coset leaders of $C_{x}$ modulo $n$ with $q{\lceil \frac{m}{2}\rceil}<x\leq 2q{\lceil\frac{m}{2} \rceil}+2$ are given for $m\geq 4$. And for odd $m$ the first several largest coset leaders modulo $n$ are determined. Furthermore, a new kind of sequences is introduced to determine the second largest coset leader modulo $n$ with $m$ even and $q$ odd. Also, for even $m$ some conjectures about the first several coset leaders modulo $n$ are proposed, whose complete verification would wipe out the difficult problem to determine the first several coset leaders of antiprimitive BCH codes. After deriving the cardinalities of the coset leaders, we shall calculate exact dimensions of many antiprimitive LCD BCH codes.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.