Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

When Not to Classify: Anomaly Detection of Attacks (ADA) on DNN Classifiers at Test Time (1712.06646v2)

Published 18 Dec 2017 in cs.LG and cs.CR

Abstract: A significant threat to the recent, wide deployment of machine learning-based systems, including deep neural networks (DNNs), is adversarial learning attacks. We analyze possible test-time evasion-attack mechanisms and show that, in some important cases, when the image has been attacked, correctly classifying it has no utility: i) when the image to be attacked is (even arbitrarily) selected from the attacker's cache; ii) when the sole recipient of the classifier's decision is the attacker. Moreover, in some application domains and scenarios it is highly actionable to detect the attack irrespective of correctly classifying in the face of it (with classification still performed if no attack is detected). We hypothesize that, even if human-imperceptible, adversarial perturbations are machine-detectable. We propose a purely unsupervised anomaly detector (AD) that, unlike previous works: i) models the joint density of a deep layer using highly suitable null hypothesis density models (matched in particular to the non- negative support for RELU layers); ii) exploits multiple DNN layers; iii) leverages a "source" and "destination" class concept, source class uncertainty, the class confusion matrix, and DNN weight information in constructing a novel decision statistic grounded in the Kullback-Leibler divergence. Tested on MNIST and CIFAR-10 image databases under three prominent attack strategies, our approach outperforms previous detection methods, achieving strong ROC AUC detection accuracy on two attacks and better accuracy than recently reported for a variety of methods on the strongest (CW) attack. We also evaluate a fully white box attack on our system. Finally, we evaluate other important performance measures, such as classification accuracy, versus detection rate and attack strength.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube