2000 character limit reached
A Shapelet Transform for Multivariate Time Series Classification (1712.06428v1)
Published 18 Dec 2017 in cs.LG
Abstract: Shapelets are phase independent subsequences designed for time series classification. We propose three adaptations to the Shapelet Transform (ST) to capture multivariate features in multivariate time series classification. We create a unified set of data to benchmark our work on, and compare with three other algorithms. We demonstrate that multivariate shapelets are not significantly worse than other state-of-the-art algorithms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.