Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

NSML: A Machine Learning Platform That Enables You to Focus on Your Models (1712.05902v1)

Published 16 Dec 2017 in cs.LG and cs.DC

Abstract: Machine learning libraries such as TensorFlow and PyTorch simplify model implementation. However, researchers are still required to perform a non-trivial amount of manual tasks such as GPU allocation, training status tracking, and comparison of models with different hyperparameter settings. We propose a system to handle these tasks and help researchers focus on models. We present the requirements of the system based on a collection of discussions from an online study group comprising 25k members. These include automatic GPU allocation, learning status visualization, handling model parameter snapshots as well as hyperparameter modification during learning, and comparison of performance metrics between models via a leaderboard. We describe the system architecture that fulfills these requirements and present a proof-of-concept implementation, NAVER Smart Machine Learning (NSML). We test the system and confirm substantial efficiency improvements for model development.

Citations (85)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.