Papers
Topics
Authors
Recent
2000 character limit reached

Ergodicity of some classes of cellular automata subject to noise (1712.05500v3)

Published 15 Dec 2017 in math.PR, cs.DC, math.DS, and nlin.CG

Abstract: Cellular automata (CA) are dynamical systems on symbolic configurations on the lattice. They are also used as models of massively parallel computers. As dynamical systems, one would like to understand the effect of small random perturbations on the dynamics of CA. As models of computation, they can be used to study the reliability of computation against noise. We consider various families of CA (nilpotent, permutive, gliders, CA with a spreading symbol, surjective, algebraic) and prove that they are highly unstable against noise, meaning that they forget their initial conditions under slightest positive noise. This is manifested as the ergodicity of the resulting probabilistic CA. The proofs involve a collection of different techniques (couplings, entropy, Fourier analysis), depending on the dynamical properties of the underlying deterministic CA and the type of noise.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube