Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Hierarchical Recurrent Neural Network for Symbolic Melody Generation (1712.05274v2)

Published 14 Dec 2017 in cs.SD and cs.MM

Abstract: In recent years, neural networks have been used to generate symbolic melodies. However, the long-term structure in the melody has posed great difficulty for designing a good model. In this paper, we present a hierarchical recurrent neural network for melody generation, which consists of three Long-Short-Term-Memory (LSTM) subnetworks working in a coarse-to-fine manner along time. Specifically, the three subnetworks generate bar profiles, beat profiles and notes in turn, and the output of the high-level subnetworks are fed into the low-level subnetworks, serving as guidance for generating the finer time-scale melody components in low-level subnetworks. Two human behavior experiments demonstrate the advantage of this structure over the single-layer LSTM which attempts to learn all hidden structures in melodies. Compared with the state-of-the-art models MidiNet and MusicVAE, the hierarchical recurrent neural network produces better melodies evaluated by humans.

Citations (77)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.