A Hierarchical Recurrent Neural Network for Symbolic Melody Generation (1712.05274v2)
Abstract: In recent years, neural networks have been used to generate symbolic melodies. However, the long-term structure in the melody has posed great difficulty for designing a good model. In this paper, we present a hierarchical recurrent neural network for melody generation, which consists of three Long-Short-Term-Memory (LSTM) subnetworks working in a coarse-to-fine manner along time. Specifically, the three subnetworks generate bar profiles, beat profiles and notes in turn, and the output of the high-level subnetworks are fed into the low-level subnetworks, serving as guidance for generating the finer time-scale melody components in low-level subnetworks. Two human behavior experiments demonstrate the advantage of this structure over the single-layer LSTM which attempts to learn all hidden structures in melodies. Compared with the state-of-the-art models MidiNet and MusicVAE, the hierarchical recurrent neural network produces better melodies evaluated by humans.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.