Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Krylov Subspace Approximation for Local Community Detection in Large Networks (1712.04823v2)

Published 13 Dec 2017 in cs.SI

Abstract: Community detection is an important information mining task to uncover modular structures in large networks. For increasingly common large network data sets, global community detection is prohibitively expensive, and attention has shifted to methods that mine local communities, i.e. identifying all latent members of a particular community from a few labeled seed members. To address such semi-supervised mining task, we systematically develop a local spectral subspace-based community detection method, called LOSP. We define a family of local spectral subspaces based on Krylov subspaces, and seek a sparse indicator for the target community via an $\ell_1$ norm minimization over the Krylov subspace. Variants of LOSP depend on type of random walks with different diffusion speeds, type of random walks, dimension of the local spectral subspace and step of diffusions. The effectiveness of the proposed LOSP approach is theoretically analyzed based on Rayleigh quotients, and it is experimentally verified on a wide variety of real-world networks across social, production and biological domains, as well as on an extensive set of synthetic LFR benchmark datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.