Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

An Enhanced Hybrid MobileNet (1712.04698v2)

Published 13 Dec 2017 in cs.CV

Abstract: Complicated and deep neural network models can achieve high accuracy for image recognition. However, they require a huge amount of computations and model parameters, which are not suitable for mobile and embedded devices. Therefore, MobileNet was proposed, which can reduce the number of parameters and computational cost dramatically. The main idea of MobileNet is to use a depthwise separable convolution. Two hyper-parameters, a width multiplier and a resolution multiplier are used to the trade-off between the accuracy and the latency. In this paper, we propose a new architecture to improve the MobileNet. Instead of using the resolution multiplier, we use a depth multiplier and combine with either Fractional Max Pooling or the max pooling. Experimental results on CIFAR database show that the proposed architecture can reduce the amount of computational cost and increase the accuracy simultaneously.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube