Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Document Generation Process for Topic Detection based on Hierarchical Latent Tree Models (1712.04116v3)

Published 12 Dec 2017 in cs.CL, cs.IR, and cs.LG

Abstract: We propose a novel document generation process based on hierarchical latent tree models (HLTMs) learned from data. An HLTM has a layer of observed word variables at the bottom and multiple layers of latent variables on top. For each document, we first sample values for the latent variables layer by layer via logic sampling, then draw relative frequencies for the words conditioned on the values of the latent variables, and finally generate words for the document using the relative word frequencies. The motivation for the work is to take word counts into consideration with HLTMs. In comparison with LDA-based hierarchical document generation processes, the new process achieves drastically better model fit with much fewer parameters. It also yields more meaningful topics and topic hierarchies. It is the new state-of-the-art for the hierarchical topic detection.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.