Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Compressible 360° Video Isomers (1712.04083v1)

Published 12 Dec 2017 in cs.CV

Abstract: Standard video encoders developed for conventional narrow field-of-view video are widely applied to 360{\deg} video as well, with reasonable results. However, while this approach commits arbitrarily to a projection of the spherical frames, we observe that some orientations of a 360{\deg} video, once projected, are more compressible than others. We introduce an approach to predict the sphere rotation that will yield the maximal compression rate. Given video clips in their original encoding, a convolutional neural network learns the association between a clip's visual content and its compressibility at different rotations of a cubemap projection. Given a novel video, our learning-based approach efficiently infers the most compressible direction in one shot, without repeated rendering and compression of the source video. We validate our idea on thousands of video clips and multiple popular video codecs. The results show that this untapped dimension of 360{\deg} compression has substantial potential--"good" rotations are typically 8-10% more compressible than bad ones, and our learning approach can predict them reliably 82% of the time.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.